roman game domination subdivision number of a graph
نویسندگان
چکیده
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the minimum weight of a roman dominating function on g. the roman game domination subdivision number of a graph $g$ is defined by the following game. two players $mathcal d$ and $mathcal a$, $mathcal d$ playing first, alternately mark or subdivide an edge of $g$ which is not yet marked nor subdivided. the game ends when all the edges of $g$ are marked or subdivided and results in a new graph $g'$. the purpose of $mathcal d$ is to minimize the roman dominating number $gamma_r(g')$ of $g'$ while $mathcal a$ tries to maximize it. if both $mathcal a$ and $mathcal d$ play according to their optimal strategies, $gamma_r(g')$ is well defined. we call this number the {em roman game domination subdivision number} of $g$ and denote it by $gamma_{rgs}(g)$. in this paper we initiate the study of the roman game domination subdivision number of a graph and present sharp bounds on the roman game domination subdivision number of a tree.
منابع مشابه
Roman Game Domination Subdivision Number of a Graph
A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملRainbow game domination subdivision number of a graph
The rainbow game domination subdivision number of a graph G is defined by the following game. Two players D and A, D playing first, alternately mark or subdivide an edge of G which is not yet marked nor subdivided. The game ends when all the edges of G are marked or subdivided and results in a new graph G′. The purpose of D is to minimize the 2-rainbow dominating number γr2(G ′) of G′ while A t...
متن کاملconvex domination subdivision number of a graph
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره 2
شماره 4 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023